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NOTE 

A Note on Compound Matrices 

1. INTRODUCTION 

The compound matrix method (CM) is essentially a 
clever adaptation of the shooting method for linear eigen- 
value problems. Primitive shooting is notoriously unstable 
when applied to problems in which the target condition is 
computed from the solutions of the given system of differen- 
tial equations in some multiplicative way, typically by the 
equations which must be generated from the original 
system. Thus the numerical error incurred in computing the 
target condition in an additive way but at the expense of 
solving a potentially much larger system of new differential 
equations which must be generated from the original 
system. Thus the numerical error incurred in computing the 
target value is only controlled by the accuracy with which 
the CM equations are solved. In a typical problem, the 
eigensystem is derived from the linearised form of the field 
equations and boundary conditions and thus is always 
homogeneous. In practice, two estimates of the critical 
eigenvalue are made for a given set of system parameters 
and these are used to generate target values by integrating 
the CM equations with a reputable library supplied routine. 
These two target values are now used as the genus of a 
secant convergence procedure whose objective is the deter- 
mination of the eigenvalue for which the target value is zero, 
the iteration being terminated on a mixed error test. Note 
that the target value (generally complex) is an analytic func- 
tion of the eigenvalue and it would be disadvantageous to 
treat the full problem in any way which countermanded this 
feature (e.g., by deliberately looking for purely imaginary 
eigenvalues for overstable modes). Without the analyticity 
property, complex secant convergence must be replaced by 
a more awkward beast. All results quoted in this note used 
a tolerance of lop9 in the secant algorithm and the CM 
equations were integrated with NAG routine D02BAF and 
a tolerance of 10p9. Computations were performed on 
an IBM3090. 

Some early applications of the technique include work by 
Gilbert and Backus [ 1 ] in their discussion of elastic wave 
problems and work ‘by Lakin et al. [2] to approximate 
the eigenvalues of the Orr-Sommerfeld problem. Ng and 
Reid [3] have extensively developed the method in their 
investigation of boundary layer and related stiff problems. 

0021~9991/92 $5.00 
Copyright 0 1992 by Academic Press, Inc. 
All rights of reproduction in any form reserved 

472 

Further details can be found in Drazin and Reid [4]. 
Recently an increasing number of applications have come 
from traditional applied mathematics. For example, Payne 
and Straughan [S] and Straughan [6] have fruitfully used 
the technique in linear and non-linear convective studies. 

2. THE CONSTRUCTION PROCEDURE 

We now consider a brief but rigorous account of the CM 
technique as it pertains to the boundary value problem 

g= A(A, z) Y, z E (0, 1) 

BY=0 on z=O, (2.1) 

CY=O on z=l, 

where A is an eigenvalue, Y is an n vector, A(I, z) is an n x n 
matrix and B and C are respectively (n -m) x n and m x n 
matrices of full rank; i.e., (n -m) conditions are given at 
z = 0 and m conditions at z = 1. We may assume without 
loss of generality that m $ n/2. In Eqs. (2.1) I*, Y, A, B, and 
Care generally complex, but z is always real. All subsequent 
analysis is based on this assumption although in many 
important applications, the principle of exchange of 
stabilities is valid and the resulting eigenvalue problem can 
be formulated within a real framework effectively halving 
the number of CM equations. Let 

yl(& z), y2(A, z), . ..) y,(i, z) 

be m linearily independent solutions of (2.1) each satisfying 
the boundary conditions at z = 0 and define A4 to be the 
n x m matrix whose rth column is y,(l, z), i.e., 

M= CYI, Y2, Y3, ...9 YA 

Equation (2.1) attributes M with the property 

z= [Ay,, . . . . Ay,] = AM. (2.2) 
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Any solution W( A, z) of (2.1) satisfying the boundary condi- 
tions at z = 0 has form 

W(A z) = 5 %Y,(A z), (2.3) 
r=l 

where a,, . . . . a, are complex constants not all identically 
zero. Since W must satisfy the boundary condition CW= 0 
atz=l then 

f a,Cy,(l,z)=CMa=O on z=l (2.4) 
r=l 

in which a is the m vector whose rth component is a,. Thus 
the m x m matrix CM is singular and this requirement deter- 
mines acceptable 1 values. In view of the Laplace expansion 
technique for the evaluation of determinants, it is obvious 
that 

CA) 
det(CW= c /C,l ai,, 

k=l 

(2.5) 

where (C, 1 and Qk are m x m minors of C and M, respec- 
tively, and where the summation is performed over some 
exhaustive listing of the (z) possible combinations of m 
rows of M out of n. Each compound matrix variable is 
defined to be a m x m minor of M in which the rows of M 
appear in increasing order, so this strategy can only succeed 
provided each variable can be evaluated at z = 1. These 
values are obtained as the solution of an initial value 
problem. 

The construction process begins with an exhaustive list- 
ing of all the possible minors of M. No unique enumeration 
scheme exists: within this work we shall enumerate each 
variable in terms of the m rows of M appearing in the 
determinant form and arranged in increasing order from left 
to right. Hence 

@,=(1,2,3 ,..., m-1,m) 

CD2 = (1, 2, 3, . . . . m - 1, m + 1) 

. . . 

@ n--m+ 1 = (1,2, 3, . . . . m - 1, n) 

@ n--m+2=(l, 2, 3, . . . . m,m+ 1) 

. . 

@ ( n ) = (n - m + 1, . . . . n - 1, n), 
m 

of A& and so on until all possible combinations are realised. 
The differential equations satisfied by any @ are constructed 
by observing that the derivative of this variable is a sum of 
m determinants in which the kth determinant has its kth 
row differentiated but the rest untouched. In view of (2.2), 
each differentiated row of M can be replaced by a linear 
combination of the rows of A4 and consequently each deter- 
minant in this sum can be expressed as a linear combination 
of the minors of M and hence as a linear combination of the 
other CM variables. In particular, coefficients appearing in 
this sum can be readily identified as entries of A. Thus the 
derivative of each variable is expressed as a sum of products 
involving an entry of A and a CM variable. In this way, (2) 
differential equations are generated. The value of each 
variable at z = 1 now is determined by integration of these 
equations with initial conditions that are consistent with the 
boundary condition at z = 0. 

By construction, M has rank m and so at least one of the 
CM variables is initially non-zero. Moreover, the remaining 
(n - m) rows of M can be expressed as linear combinations 
of the m “preferred” rows and consequently the initial con- 
ditions exhibit one degree of freedom. Thus any set of initial 
conditions is equivalent to any other set modulo a constant 
multiplying factor. In practice, one of the non-zero variables 
is initialised to unity and the rest are automatically 
determined. Hence the target condition can be computed at 
z = 1 as a linear combination of CM variables. 

Clearly CM equations are eminently constructable by 
symbolic manipulation packages. We did not choose to use 
this route primarily because our objective was the construc- 
tion of a utility which would take information from a con- 
trol file and output a Fortran 77 subroutine characterising 
the specific application. The key to its operation lies in the 
observation that the entries of the original system matrix A 
are the coefficients appearing in the CM equations. All 
variables are constructed and differentiated symbolically 
within the utility but without the need for any external 
symbolic manipulation package. The CM strategy is now 
illustrated with a selection of examples from applied 
mathematics and physics. 

3. BEAM OSCILLATIONS 

The oscillation of a uniform beam in the absence of 
(2.6) applied loads is governed by the non-dimensionalised 

equation 

ah a% 
s+g=O (z, t)E(o, 1)x(0, co) (3.1) 

where the general strategy is to systematically generate all in which u(z, t) is the displacement of the beam at time t and 
variables containing the first row of M, then the second row position z. A normal modes analysis of (3.1) investigates 
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solutions of type u(z, t) = Re(u(z) eiw’), where u(z) satisfies 
the ordinary differential equation 

d4u 
-g=h ZE(0, l), 2=0*. 

This equation can be converted to the form Y’ = A(z, ,?) Y, 
where Y and A are respectively 

Y= 

(3.2) 

A= 

Assuming that two boundary conditions are imposed at 
each of z = 0 and z = 1 then there are six compound matrix 
equations whose form only depends on (3.1). In terms of the 
variable enumeration scheme described in the construction 
procedure, the appropriate variables di, . . . . #6 may be 
represented by the abbreviated forms 

41 = (L2h $*=(L 3), 43 = (1,4), 

$754 = @,3), 45 = (2,4), 46 = (3,4), 
(3.3) 

and satisfy the differential equations 

A variety of eigenvalue problems are possible for this beam 
but they are all generated from sensible combinations of the 
three types of end conditions portrayed by the mathematical 
requirements that either u = u” = 0 (freely supported) or u = 
u’ = 0 (cantilever supported) or u” = u”’ = 0 (unsupported). 
Every sensible combination yields real eigenvalues. The 
initial and target characterisations of these end conditions 
now follow: 

End condition Initial condition Target condition 

Free end 
Cantilever end 
Unsupported end 

I$~ = 1, rest zero 
d6 = 1, rest zero 
q%, = 1, rest zero 

Results are presented for the beam configurations 
Free-Free, Cantilever-Unsupported, and Cantilever-Free. 
In each of these cases it is easily verified that the correspond- 
ing natural frequencies, 0, satisfy respectively w  = n*rc*, 

cos o cash w  = - 1, and tan o = tanh o. All computational 
timings are based on initial guesses which were in relative 
error by 10 %: 

Problem 

Free-Free 

Eigenvalue True Computed CPU (s) 

1st harmonic 97.40909 97.40906 0.141 
2nd harmonic 1558.5455 1558.5450 0.209 

Cant-Unsup. 1st harmonic 12.36236 12.36236 0.112 
2nd harmonic 485.5188 485.5186 0.173 

Cant.-Free 1st harmonic 237.72107 237.72097 0.148 
2nd harmonic 2496.4874 2496.4864 0.217 

4. BENARD CONVECTION 

The linear instability analysis for the convection of an 
incompressible viscous fluid contained between stationary 
boundaries z = 0, 1 requires the determination of the eigen- 
values, rr, of the sixth-order system 

o(D* - a’)~ = (D* - a*)’ w - Ra*B, 

ap,e = (D* - a*)8 + Rw, 
(4.1) 

where D = d/dz, w is the axial velocity component, 8 is tem- 
perature, a is a wavenumber, P, is the viscous Prandtl num- 
ber and R* is the Rayleigh number. Typically boundaries 
are either stress free (w = D2w = 0) or rigid (w = Dw = 0). 
In both cases the natural thermal condition has form 
DC3 + he = 0, where h ( 20) is the Robin constant. For 
perfectly insulating boundaries, h = 0, whereas for perfectly 
conducting boundaries, h is very large and so 8 = 0. It is 
easily verified that (4.1) assumes the standard form 
Y’ = A Y, where 

Y= 

A 

W- 

Dw 
D*w 

D3w 
e 

De - 

0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 

--‘-au2 0 2a2+a 0 Ra* 0 

0 0 0 0 0 1 
-R 0 0 0 a*+aP, 0 

The principle of exchange of stabilities is valid for this 
problem and it can be easily verified that all eigenvalues are 
real. Only (2) = 20 CM equations are needed and their 
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manual derivation is feasible. If 4,) . . . . & are the CM 
variables as enumerated in the construction procedure then 
they satisfy the differential equations 

it =42 

4, = (2a* + a) fb, + Ra*#, + ds 

&=44+&i 

i4 = (a* + ap,) h + 4, 

4, = Ra2d6 + dII 

&=h+h+h2 

i,, = -(a4+aa2)#1 +Ra’d,, 

&2=h3+d14 

d,, = - Rdl + (a2 + ap,) d12 + h5 

iI4 = (a” + oa*) h + Pa2 + a) A2 + d15 + 417 

$,, = -Rd2 + (a4 + aa2) cj4 + (2a2 + n) d13 

d,, = -Rd5 + (a” + au’) 4, + (a’+ aP,) #17 + Ra2d19 

i,g= -R&5+&)20 

d2,= -Rq&-(u4+aa2)~10+(2u2+o)d19, 

where CT is real. Initial and target properties of the CM 
variables pertaining to stress-free boundaries and rigid 
boundaries are 

Boundary type 

Stress-free 

Initial condition 

&,=1,4,5=-h, 
Rest zero 

target condition 

Mi+8,=0 

Rigid 417 = 1, 41s = -k 
Rest zero 

%+4,=0 

For two stress-free conducting boundaries (i.e., h = co), the 
corresponding eigenvalue problem is characterised by the 
initial conditions #,5 = 1, rest zero, and the target condition 
46 = 0. It is well known that stationary instability (i.e., 
u = 0) occurs when a z 2.221 and R2 z 657.511. Values for e 

when a = 2.221 and P, = 1 are given for selected R* values in 
the vicinity of R* = 657: 

Rayleigh No. R2 Computed eigenvalue CJ CPU (s) 

645 -0.1415 0.329 
650 - 0.0848 0.329 
655 -0.0283 0.330 
660 + 0.0280 0.329 
665 +0.0841 0.331 

Magnetohydrodynamic effects can be incorporated into 
Eqs. (4.1) and lead to the eighth-order system 

a(D2 - a’)w - aP,Db = (D* - a*)’ w 

- Ru*tl- QD2w, 

aP,b = QDw + (D* - u2)b, 
(4.2) 

where D, w, 0, a, P,, and R* have their previous meanings 
and b, P,, Q are respectively the axial magnetic induction, 
the magnetic Prandtl number, and the Chandrasekhar 
number. Of course, mechanical and thermal boundary con- 
ditions must now be supplemented by a magnetic condition. 
It is common practice to associate stress-free with electri- 
cally insulating boundary conditions (i.e., Db = 0) and to 
associate rigid with electrically perfectly conducting bound- 
ary conditions. Further system variables y, = b and y, = Db 
must be introduced, but within this extended framework, 
Eq. (4.2) is representable in the form Y’ = A Y, where A in 
now an 8 x 8 matrix. 

Chandrasekhar [S] has studied Eqs. (4.2) and it is well 
known that overstable and stationary instability are both 
possible if P, > P,. Hence the critical eigenvalues of (4.2) 
can be complex although A is real. Since the boundary con- 
ditions are evenly split, (i) = 70 complex or 140 real CM 
equations are needed. It is not profitable to present these 
equations here but in our opinion their formulation lies 
on the edge of manual credibility although the utility 
constructs a suitable Fortran subroutine almost instantly. 
Some appropriate initial and target conditions on CM 
variables are 

Boundary type 

Stress-free 
electrically 
insulating 

Rigid 
electrically 
conducting 

Initial condition 

94, = 1, 4.w = -k 
4117= 13 4,,9= -k 

Rest zero 

45s = 1, $60 = -h, 
4,~ = 1, ho = -k 

Rest zero 

Target condition 

hdn + 4, = 0 
bb, + 494 = 0 

~~,,+Bn=O 
h&a + 4s~ = 0 
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where bn + V, + 7o is the n th complex CM variable. Some 
results for two stress-free, electrically insulating and ther- 
mally perfectly conducting boundaries are presented when 
P, = 1, P, = 3, and Q = 100. Chandrasekhar [S] proves 
that the threshold for stationary instability is independent of 
P, and P,. In fact, 

a Over = 2.657 R&,, = 1747.76, 

astat = 3.702 Rzt,, = 2653.701. 

Critical eigenvalues in the vicinity of the overstable mode 
are illustrated in the following table of results. All timings 
are based on initial guesses of c, = 9i and c2 = 8.5i in the 
secant algorithm. 

Rayleigh No. RZ Eigenvalue CT 

1750 0.00961+ i8.812 
1748 0.00100 + is.820 
1746 -0.00763 + i8.829 
1744 -0.01625 + i8.838 

CPU (s) 

3.534 
3.535 
3.526 
3.533 

5. CONCLUSIONS 

We conclude with a summary of some major advantages 
and disadvantages of the compound matrix technique in 
connection with eigenvalue problems and contrast these 
with a comparable matrix method, say inverse iteration. 
Both aim to estimate the system eigenvalue closest to some 
initial guess and in this respect both methods require a 
reliable start. 

Advantages 

(1) The original boundary value problem is exactly con- 
verted into an equivalent initial value problem in contrast to 
matrix methods where an element of truncation takes place 
in the sense that the eigenfunction is either discretized or 
approximated by some finite series. 

(2) The CM equations themselves are dependent only 
on the order of the original system and the split of the 
boundary conditions. Their specific nature only enters the 
problem through initial and target requirements and conse- 
quently sophisticated boundary conditions can be treated 
and amended with considerable ease. For example, in 
convection problems, it is often desirable to consider all 
combinations of free, rigid, and mixed boundaries in addi- 
tion to a variety of thermal conditions. Such alterations are 
implemented by varying the initial and target requirements. 
In contrast, matrix methods tend to embed boundary condi- 
tions within the system matrix. Often it is possible to accom- 
modate such changes with ease but we believe that this 

procedure is potentially more error-prone than the CM 
approach, especially with technically complicated boundary 
conditions. 

(3) Matrix methods can be memory intensive. In con- 
trast, CM methods rely on differential equation integrators 
which are often economical in memory requirements and so 
even large applications can be implemented on a microcom- 
puter. Programme coding is usually straightforward once 
the system of controlling equations are constructed. 

(4) Often matrix methods require a reasonable degree 
of mathematical competence, not only in the construction of 
the system matrix, but also in the development of the related 
software to analyse this matrix. Sometimes it is possible to 
convert the given system into a single differential equation 
with a corresponding simply banded matrix and, on such 
occassions, an “off the shelf’ treatment can be employed. 
However, many recent applications involve systems with 
non-constant coefficients (often numerically determined) 
and, in such cases, the single high-order differential equa- 
tion may not be a realistic possibility. For example, inverse 
iteration typically generates complex matrices which are 
block structured with banded non-zero blocks. To our 
knowledge such programme material cannot be regarded as 
“off the shelf.” Indeed the solution of problems of this type 
are more akin to preconditioning and conjugate gradient 
methods. On the other hand, the CM method only requires 
a differential equation integrator and the performance of the 
technique is only limited by the quality of this integrator. All 
major software libraries have an abundance of high quality 
software in this department. Hence the CM approach offers 
the casual user high quality performance with minimal 
effort. In a non-stiff environment, an extrapolation 
integrator such as Stoer and Bulirsch [7] can be par- 
ticularily effective. 

(5) In many applications, the CM methods return a 
superior accuracy to matrix methods in view of the exact- 
ness of the procedure. For example, it is well known that the 
accuracy of inverse iteration deteriorates markedly if the 
system matrix is “too large.” Although this is not regarded 
as serious, it is nevertheless disconcerting that such 
instabilities appear. No such difficulties arise with com- 
pound matrices. 

Disadvantages 

(1) It is difficult to extract the eigenfunction from the 
CM variables, whereas with matrix methods, the eigenfunc- 
tion is often obtained directly as some high-dimensional 
vector or is approximated by some finite series. Drazin and 
Reid [4] show how this is done for the Orr-Sommerfeld 
equation. 

(2) The equation generation process is often tedious 
and requires the generation of a sizeable number of first- 
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order differential equations. However, the procedure is 
routine and is eminently suited to automatic construction. 
We are happy to supply a well-tested utility to perform 
this operation and believe that its existence enhances 
the applicability of the technique (Email GAMAll at 
UK.GLASGOW.CMS). In our opinion, the proliferation of 
equations becomes unacceptable for 12 or above (e.g., at 
order 12, as many as 924 equations may be required) and, 
although other methods are also becoming less manageable, 
they are likely to become more attractive as order increases. 
However, systems whose order exceeds 11 are regarded as 
unusual. As a matter of interest only m2 + 1 of the (i) 
compound matrix variables are independent; the rest of 
the equations are by-products of the algebraic structure 
inherent in the variable definitions. 

(3) Whenever boundary conditions are unevenly 
distributed, the number of compound matrix variables is 
substantially reduced. However, in most applications the 
original system is even and the boundary aam is evenly 
distributed and this is unfortunately the worst possible 
scenario. 
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